

Reconstruction of the Stardust Entry

Prasun N. Desai Garry D. Qualls NASA Langley Research Center

5th International Planetary Probe Workshop June 28, 2007 Bordeaux, France

- Stardust was the Forth of NASA's Discovery Class Mission
 - Launched February 7, 1999
 - Return cometary samples from the comet Wild-2, along with interstellar particles
 - First mission to return samples from a comet
- Maneuver and targeting procedures placed capsule on desired entry flight-path on morning of January 15, 2006 at 09:56:42.3 UTC
 - Successfully landed under parachute at Utah Test and Training Range (UTTR)
 - First direct entry from an interplanetary trajectory to fly & land over continental US
- Overview of the entry reconstruction to assess comparison between preentry prediction and actual flight

Stardust Sample Return Capsule Configuration

Langley Research Center

Capsule mass = 45.8 kg

Nominal Stardust Capsule Entry Sequence

Final Capsule Landing Location

- Stardust capsule landed very close to the desired target
 - Understanding hypersonic flight performance is of great interest
 - Specifically, assessing how the pre-entry predictions of flight dynamics, aerodynamics, and aerothermodynamics
- Only limited data exists to perform reconstruction
 - No onboard sensors on capsule
 - Only available data source is from UTTR radar tracking stations
 - Video and tracking data
 - Balloon measurement of atmospheric properties up to 35 km two hours prior to entry

Northward Wind Component Comparison to GRAM-95 Model

- Sustained wind to the North observed (~40 m/s at 10 km)
 - Blizzard moving through Utah during landing
- Corresponds to 3- σ profile from GRAM-95 variations

Eastward Wind Component Comparison to GRAM-95 Model

Langley Research Center

 Eastward wind observed was a little larger than nominal from GRAM-95

Deceleration Profile from UTTR Tracking Data

Langlev Research Center

• Time between drogue and main deployment < timer setting of 350.6 s Assessment underway to determine if main deployed on backup baroswitch.

- Since there was no onboard sensor data, a "traditional" trajectory reconstruction cannot be performed
 - Therefore, a Best Estimated Trajectory (BET) is calculated
- For hypersonic flight, only two data sources were available
 - Final Navigation entry state at atmospheric interface
 - Latitude and longitude data from UTTR radar tracking stations at time of drogue deployment (pre-entry prediction of 133 s from entry)
 - Tracking data indicates drogue deployment time at 137.9 s from entry
 - Actual deployment time 4.9 s later than predicted (within pre-entry Monte Carlo dispersion prediction of \pm 7.4 s)
- With, confidence in these two endpoints a hypersonic trajectory can be calculated using the pre-entry simulation

- Within the trajectory simulation, a multiplier on capsule drag was applied as the control parameter to determine the variation needed to patch the two endpoint conditions
 - An drag increase of 0.83% is calculated
 - Therefore, pre-entry prediction was very close to actual flight
 - Altitude is within 3 m between BET and tracking data
 - Mach number is within 0.02 between BET and tracking data
- The 0.83% increase in drag can arise form multiple sources
 - Mis-prediction in entry state, capsule C_D, or atmospheric density
 - Final entry state was confirmed to be extremely accurate by STRATCOM
 - No measure of density available above 35 km
 - So, relative contributions between density and C_D cannot be determined

Stardust Trajectory from Radar Tracking Data

Hypersonic Capsule Attitude Assessment

- Since there was no onboard sensor data, capsule hypersonic attitude cannot be determined
 - Attitude must be inferred from observation of recovered heatshield
- There is very little, if any, charring of the shoulder region or aftbody of TPS
 - Inspection of forebody shows charring patterns that imply symmetry heating
 - Observations suggest that attitude must have been only a few degrees
 - Pre-entry simulation predicted angle-of-attack of 2.6° with a maximum of 5.4°
- Overall observations support the assertion that the aerodynamics database reasonably predicted hypersonic static stability

Stardust Capsule Heatshield Inspection

Langley Research Center

Very little aftbody charring

Symmetrical forebody charring

 Heatshield inspection suggests hypersonic attitude must have been small

Entry trajectory prediction was used to vector airplane for real-time aerothermodynamic environment observations during entry

- An overview of the reconstruction analyses is described
- Reconstructed trajectory was close to pre-entry prediction
 - Drag was within 1%
 - Drogue deployment time was 4.9 s later than predicted (within Monte Carlo pre-entry predicted dispersion of ± 7.4 s)
- Observations of the recovered heatshield indicated small attitude during hypersonic flight
- Overall assertion is that the Stardust entry flight performance was close to the pre-entry predictions
- Consequently, the design principles and methodologies utilized for the flight dynamics, aerodynamics, and aerothermodynamics analyses were corroborated